If it's not what You are looking for type in the equation solver your own equation and let us solve it.
390x-6x^2=0
a = -6; b = 390; c = 0;
Δ = b2-4ac
Δ = 3902-4·(-6)·0
Δ = 152100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{152100}=390$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(390)-390}{2*-6}=\frac{-780}{-12} =+65 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(390)+390}{2*-6}=\frac{0}{-12} =0 $
| x-19=5x-25 | | 125+35+x=180 | | 2x/5+x/3=20 | | 7/8u=-35 | | X+3x+20=220 | | 9x+8=—1 | | 15t-1.86t^2-25=0 | | -2x-6=4x+8 | | p-34=79 | | 8-d(d+4)=3d-d(d+2) | | 5(x-6)^2=80 | | 4x^2+18x+36=0 | | 5x-51=-3x+53 | | 4x-2+3=3(x-1) | | 6t-9=0 | | 19=-5x-6(3x+150+5 | | -32+5=20+x | | Y=4/7x+24/7-2 | | 50=2(2z+5) | | 110+(8x+30)=180 | | 12=6x-30 | | -4(2v-15/4)=125/3 | | 3-x+2x-9+x=10-8x-1-x+5x | | 9/2(-7/2r-2)=801/16 | | 40=2(5x-5) | | 3-x+2x-9+10=10-8x-1-x+5x | | 14=7(2y-8) | | 18x2+1=0 | | 7(9x-4)=48 | | 57.75=3x+14.25 | | X^3-3=3x | | 14.25x+3=57.75 |